www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 [ 51 ] 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358


Рис. 3.23, б. Выход фильтра с характеристикой типа приподнятого косинуса и входные дискретные значения, задержанные на некоторое время

В разделе 1.6.3 было показано, что для получения идеальных (неискажающих) передающих характеристик канала в пределах полосы сигнала W, функция \Hc(f)\ должна быть константой. Кроме того, Q(f) должна быть линейной функцией частоты, что эквивалентно утверждению запаздывание должно быть постоянным для всех спектральных компонентов сигнала . Если \Hc{f)\ не является константой в пределах полосы W, то канал будет искажать амплитуду сигнала. Если Qif) не является линейной функцией частоты в пределах полосы W, канал будет искажать фазу. Во многих каналах, искажающих подобным образом информацию, например каналах с замираниями, искажение фазы и амплитуды обычно проявляется одновременно. При передаче последовательности импульсов подобное искажение проявляется в виде рассеивания или размывания импульсов, так что ни один импульс принятой демодулированной последовательности не определяется однозначно. В разделе 3.3 описывалось перекрытие импульсов, известное как межсимвольная интерференция. Это эффект, который проявляется в большинстве систем модуляции и является одной из основных помех надежной высокоскоростной передачи по низкочастотным каналам. Совокупность методов обработки или фильтрации сигнала, направленных на устранение или снижение межсимвольной интерференции, именуется как выравнивание и рассматривается в данном разделе.

На рис. 2.1 выравнивание разбито на две большие категории. Первая категория, оценка последовательности с максимальным правдоподобием (maximum-likelihood sequence estimation - MLSE), подразумевает измерение hjit) с последующей подстройкой приемника под требования передачи. Цель такой подстройки - позволить детектору произвести точную оценку демодулированной искаженной последовательности импульсов. При использовании приемника MLSE искаженные выборки не изменяются и не проходят этап непосредственной компенсации последствий помех; вместо этого приемник перенастраивается так, чтобы максимально эффективно работать с искаженными выборками. (Пример этого метода, известный как выравнивание Витерби, рассмотрен в разделе 15.7.1.) Вторая катего-



рия, выравнивание с помощью фильтров, включает использование фильтров для компенсации искажения импульсов. В этом случае детектору предоставляется последовательность демодулированных выборок, модифицированных или очищенных эквалайзером от последствий межсимвольной интерференции. Выравнивание с помощью фильтров (более популярный подход из двух описанных выше) также имеет несколько подтипов. Фильтры могут быть линейными устройствами, содержащими только элементы с прямой связью {трансеерсальные эквалайзеры), или нелинейными, включающими элементы с обратной связью (эквалайзеры с обратной связью по решению). Кроме того, фильтры могут различаться алгоритмом работы, который может быть заданным или адаптивным. Также они могут различаться разрешением или частотой обновления. Если выборки производятся только в пределах символа, т.е. одна выборка на символ, то это символьное разделение. Если каждому символу соответствует несколько выборок, то это фракционное разделение.

Модифицируем уравнение (3.77), заменив принимающий/выравнивающий фильтр отдельными (принимающим и выравнивающим) фильтрами, определяемыми частотными передаточными функциями H,if) и Н.ф. Будем также считать, что общая передаточная функция системы H(f) имеет вид приподнятого косинуса, и обозначим ее НксФ- Таким образом, можем записать следующее:

Нкс(/) = Н,(ЛН,{1)НН,ф. (3.83)

В системах, представляющих практический интерес, частотная передаточная функция системы г(/) и ее импульсная характеристика h,{t) не известны с точностью, достаточной для разработки приемника, который в любой момент времени дает нулевую межсимвольную интерференцию. Передающий и принимающий фильтры, как правило, выбираются так, чтобы

Hrc = H,(J)H,(J) (3.84)

Таким образом, характеристики АГ,(/) и HXt) имеют вид корней из приподнятого косинуса. Следовательно, передаточная функция эквалайзера, необходимая для компенсации искажения, внесенного каналом, является обратно пропорциональной передаточной функции канала:

HJf) = - = --е-К (3.85)

Иногда частотная передаточная функция системы допускает межсимвольную интерференцию в специально выбранных точках дискретизации (например, передаточная функция гауссового фильтра). Такие передаточные функции позволяют повысить эффективность использования полосы, по сравнению с фильтром с характеристикой типа приподнятого косинуса. При выборе такого конструкторского решения выравнивающий фильтр должен компенсировать не только внесенную каналом межсимвольную интерференцию, но и межсимвольную интерференцию, внесенную передающим и принимающим фильтрами [7].

3.4.2. Глазковая диаграмма

Глазковая диафамма - это изображение, полученное в результате измерения отклика системы на заданные низкочастотные сигналы. На вертикальные пластины осциллофафа подается отклик приемника на случайную последовательность импульсов, а на горизонтальные - пилообразный сигнал сигнальной частоты. Другими словами, горизонтальная вре-



менная развертка осциллографа устанавливается равной длительности символа (импульса). В течение каждого сигнального промежутка очередной сигнал накладывается на семейство кривых в интервале (О, 7). На рис. 3.24 приведена глазковая диафамма, получаемая при двоичной антиподной (биполярные импульсы) передаче сигнанов. Поскольку символы поступают из случайного источника, они могут быть как положительными, так и отрицательными, и отображение послесвечения элекпронного луча позволяет видеть изображение, имеющее форму глаза. Ширина ожрытия глаза указывает время, в течение которого должна быть произведена выборка сигнала. Разумеется, оптимальное время взятия выборки соответствует максимально распахнутому глазу, что дает максимальную защиту от воздействия помех. Если в системе не используется фильтрация, т.е. если передаваемым информационным импульсам соответствует бесконечная полоса, то отклик системы дает импульсы идеальной прямоугольной формы. В этом случае диафамма будет выглядеть уже не как глаз, а как прямоугольник. Диапазон разностей амплитуд, обозначенный через D, является мерой искажения, вызванного межсимвольной интерференцией, а диапазон разностей времен перехода через нуль, обозначенный через Уг, есть мерой неустойчивой синхронизации. На рисунке также показана мера запаса помехоустойчивости и чувствительность к ошибкам синхронизации St. Чаще всего глазковая диафамма используется для качественной оценки степени межсимвольной интерференции. По мере закрытия глаза межсимвольная интерференция увеличивается, а по мере открытия - уменьшается.

Оптимальное время взятия выборки


Рис. 3.24. Глазковая диаграмма

3.4.3. Типы эквалайзеров

3.4.3.1. Трансверсальный эквалайзер

В качестве тестовой последовательности, используемой для выравнивания, часто выбирается шумоподобная последовательность с широкополосным спектром, с помощью которой оценивается отклик канала. В простейшем смысле настройка может заключаться в передаче простого корожого импульса (приблизительно, идеального импульса) с последующим изучением импульсного отклика канала. На практике в качестве тестовой последовательности предпочтителен не одиночный импульс, а псевдошумовой сигнал, поскольку последний имеет большую среднюю мощность, а значит, большее отношение сигнал/шум при одинаковых максимальных переданных мощностях. Для изучения трансвер-сального фильтра предположим, что через систему бьш передан единственный импульс, причем система спроектирована таким образом, что общая передаточная функция имеет



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 [ 51 ] 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358