www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 [ 318 ] 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

приблизительно 10 процентов от полосы расширенного спектра. Полосы когерентности (относительно скорости передачи сигнала расширенного спектра), показанные на рис. 15.10, б, в, описывают каналы, которые можно назвать, соответственно, умеренно и сильно селективными по частотам. Позже будет показано, что системы DS/SS, работаю-шие с частотно-селективными каналами на уровне элементарных сигналов, не обязательно испытывают частотно-селективные искажения на уровне символов.

а) СоГсН=1

б) forch = 0,25

в) ГоГсн = 0,1

-2 -1 О 1 2 3 4 5 6 7 8 9 10 11 12 Временная задержка (элементарные сигналы)

Рис. 15.10. Примеры временной развертки выхода согласованного фильтра DS/SS для трех случаев, где Т - длительность элементарного сигнала. (Источник: Bogusch R. L. Digital Communications in Fading Channels: Modulation and Coding . Mission Researcli Corp., Santa Barbara, California, Report no. MRC-R-1034, March, 11, 1987.)



Проявление дисперсии сигнала в каналах с замираниями является аналогом расширения сигнала, характерного для электронного фильтра. На рис. 15.11, а изображен широкополосный фильтр (короткая импульсная характеристика) и его влияние на сигнал во временной и частотной областях. Этот фильтр похож на канал с амплитудным замиранием, выход которого относительно неискажен. На рис. 15.11, 5 показан узкополосный фильтр (широкая импульсная характеристика). Выходной сигнал претерпевает большее искажение как во временной, так и в частотной области. Данный процесс подобен происходящему в частотно-селективном канале.

s(f)

h(t, т)

ftf)

h(t, т)


О Is + т т laquo; Is R{f)

а) Характеристики канала с амплитудным замиранием

s(f)

/7(f, Т)

hit. т)


fc to fc

6) Характеристики канала с частотно-селективным замиранием

Рис. 15.11. Характеристики частотно-селективного и амплитудного замирания. (Источник: Rappaport Т. S. Wireless Communications . Prentice-Hall, Upper Saddle River, New Jersey, 1996.)

15.4. Нестационарное поведение канала вследствие движения

15.4.1. Нестационарное поведение канала, рассматриваемое во временной области

Дисперсия сигнала и ширина полосы когерентности описывают в локальной области свойства канала, связанные с расширением во времени. В то же время они не дают информации о переменном во времени поведении канала, являющемся следствием относительного движения передатчика и приемника или передвижения объектов



внутри канала. Применяемые в мобильной радиосвязи каналы нестационарны, поскольку движение передатчика и приемника приводит в результате к изменениям пути распространения. Для переданного непрерывного сигнала это вызывает изменения амплитуды и фазы сигнала в приемнике. Если все рассеивающие элементы, составляющие канал, являются стационарными, то при прекращении движения амплитуда и фаза полученного сигнала будут оставаться постоянными, т.е. канал якобы будет стационарным во времени. Как только движение возобновится, поведение канала снова станет переменным во времени. Поскольку характеристики канала зависят от положения передатчика и приемника, переменное во времени поведение в этом случае эквивалентно переменному пространственному поведению.

На рис. 15.8, в показана функция Л(ДО, обозначающая пространственно-временную корреляционную функцию; это автокорреляционная функция отклика канала на поданную синусоиду. Эта функция определяет степень корреляции между откликом канала на синусоиду, отправленную в момент времени fi, и откликом на аналогичную синусоиду, отправленную в момент tj, где Ar = f2-fi- Время когерентности (coherence time) То - это мера ожидаемого времени, за которое характеристика канала существенно инвариантна. Ранее измерение дисперсии сигнала и полосы когерентности проводилось с помощью щирокополосных сигналов. Теперь для измерения нестационарной природы канала используется видеосигнал [15]. Для измерения Л(Дг) можно передать одну и ту же синусоиду (Д/= 0) в моменты времени tx и t2, после чего будет определена функция взаимной корреляции полученных сигналов. Функция Л(Дг) и параметр 7 несут в себе информацию о скорости замирания в канале. Отметим, что для идеального стационарного канала (например, передатчик и приемник абсолютно неподвижны) отклик канала будет иметь сильную корреляцию для всех значений Дг; таким образом, Л(Дг) как функция Дг будет постоянной. Например, если расположение стационарного пользователя характеризуется нулем многолучевого распространения, то этот нуль остается неизменным, пока не появится какое-либо движение (либо со стороны передатчика или приемника, либо со стороны объектов на пути распространения). При использовании описанной ранее модели канала с плотным размещением рассеивающих элементов при постоянной скорости перемещения V и немодулированным непрерывным сигналом с длиной волны X, нормированная Л(Дг) будет иметь следующий вид:

R(At)-Jo(lcVAt). (15.23)

Здесь /о() - функция Бесселя первого рода нулевого порядка [11], VAt - пройденное расстояние, а к = 2п1Х - фазовая постоянная свободного пространства (переводящая расстояние в радианы). Время когерентности можно измерить с помощью либо времени, либо пройденного расстояния (полагая скорость фиксированной). Аморозо (Amoroso) описал такое измерение, используя непрерывный сигнал и модель канала с плотным размещением рассеивающих элементов [17]. Он определил статистическую корреляцию между комбинацией принятой амплитуды и фазы, измеренных при определенном расположении антенны хо, и соответствующей комбинацией амплитуды и фазы, измеренных при несколько смещенном расположении хо + С, причем смещение измерялось в единицах длины волны X. Когда смещение между двумя положениями антенны составляет 0,4Х, совокупные амплитуды и фазы полученного непрерывного сигнала являются статистически некоррелирующими. Иными словами, наблюдение

гпппп 1ц Кйияпи г.-ямиоаниями



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 [ 318 ] 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358