www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 [ 311 ] 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

ГЛАВА 15

Каналы с замираниями

Символы сообщений

Источник информации


Получатель информации

Символы сообщений

Другим адресатам

Y /A Необязательный элемент ] Необходимый элемент



в 1950-60-е годы впервые были смоделированы механизмы, приводящие к замиранию в каналах связи; они преимущественно применялись к тропосферной связи, охватывающей широкий диапазон частот. Примерами каналов, в которых наблюдаются явления замирания, могут служить диапазон высоких частот (high-frequency - HF) (3-30 МГц), используемый для передач через ионосферу, и диапазон ультравысоких частот (ultra-high-frequency - UHF, УВЧ) (300 МГц-3 ГГц) с диапазоном сверхвысоких частот (super-high-frequency - SHF, СВЧ) (3-30 ГГц), используемые при передаче сигналов через тропосферу. Несмотря на то что эффекты замирания в каналах радиосвязи с подвижными объектами несколько отличаются от встречающихся в ионосферных и тропосферных каналах, ранние модели все же вполне приемлемы для описания эффектов замирания в системах мобильной цифровой связи. В этой главе особое внимание уделяется так называемому релеевскому замиранию (Rayleigh fading) преимущественно в диапазоне УВЧ, которое воздействует на такие мобильные системы связи, как сотовые и персональные (personal communication systems - PCS). Кроме того, особое внимание уделяется основным проявлениям замирания, типам ухудшения характеристик и методам борьбы с ухудшением характеристик. Рассматриваются два примера характерных методов борьбы: использование эквалайзера Витерби, реализованного в системе GSM (Global System for Mobile - глобальная система мобильной связи), и RAKE-приемника (RAKE receiver), применяемого в системах CDMA, разработанных согласно требованиям стандарта Interim Standard-95 (IS-95).

15.1. Сложности связи по каналу с замираниями

При анализе характеристик систем связи отправной точкой является описание основных характеристик в классическом (идеальном) канале с белым аддитивным гауссовым шумом (additive white Gaussian noise - AWGN) со статистически независимыми гауссовыми шумовыми выборками, искажающими информационные выборки, и отсутствием межсимвольной интерференции (intersymbol interference - ISI). Основным источником ухудшения характеристик является тепловой шум, генерируемый в приемнике. Другим источником потерь являются естественные и искусственные источники шума и помех, воздействие которых на принимающую антенну можно качественно описать через параметр, называемый температурой антенны (см. раздел 5.5.5). Тепловой шум имеет, как правило, постоянную спектральную плотность мощности по всей полосе сигнала и гауссову функцию плотности вероятности напряжения с нулевым средним. В системах мобильной связи внешние шумы и помехи часто оказываются более значительными, чем тепловой шум приемника. При моделировании реальных систем следующим шагом является введение полосовых фильтров. Обычно фильтрация в передатчике служит для удовлетворения некоторых требований к спектральным составляющим. Фильтрация в приемнике часто является результатом применения согласованного фильтра, о чем говорилось в разделе 3.2.2. Из-за офаничен-ности полосы частот и фазовых искажений в фильтрах для снижения ISI, вызываемой фильтром, может потребоваться специальная обработка сигнала и его выравнивание.

Если характеристики радиоканала не заданы, то обычно подразумевается, что сигнал затухает с расстоянием так же, как при распространении в идеальном свободном пространстве. В модели свободного пространства область между антеннами передатчика и приемника предполагается свободной от объектов, которые могли бы поглощать или отражать энергию на радиочастотах. Предполагается также, что внутри этой области атмосфера ведет себя как совершенно однородная непоглощающая среда. Кроме того, считает-



ся, что земля находится бесконечно далеко от распространяемого сигнала (или, что равносильно, имеет пренебрежимо малый коэффициент отражения). По существу, в этой идеализированной модели свободного пространства ослабление между передатчиком и приемником радиочастотной энергии происходит по закону обратных квадратов. Мощность приемника, выраженная через переданную мощность, ослабляется в Lid) раз, причем данный параметр называется потерями в тракте (path loss), или потерями в свободном пространстве (free space loss) и следующим образом определяется для изотропной антенны приемника (см. раздел 5.3.1.1):

LAd):

Здесь d - это расстояние между передатчиком и приемником, а X - длина волны распространяемого сигнала. При таком идеальном распространении мощность полученного сигнала весьма предсказуема. Для больщинства реальных каналов, в которых распространение происходит в атмосфере и вблизи поверхности земли, модель распространения в свободном пространстве неадекватно описывает поведение канала и не позволяет предсказывать характеристики системы. В системах мобильной радиосвязи сигнал может передаваться от передатчика к приемнику по множеству отражательных путей. Это явление, называемое многолучевым распространением (multipath propagation), может вызывать флуктуации амплитуды, фазы и угла прибытия полученного сигнала, что определило название замирание вследствие многолучевого распространения (mnltipath fading). Другое название - сцинтилляция (scintillation) - которое происходит из радиоастрономии, используется для описания замирания, вызванного физическими изменениями в среде распространения, такими как изменение электронной плотности слоев ионосферы, которые отражают высокие частоты радиосигналов. Как замирание, так и сцинтилляция относится к случайным флуктуациям сигнала; основное отличие заключается в том, что явление сцинтилляции объясняется механизмами, существенными на расстояниях, намного меньщих длины волны (например, движение электронов). Прямое моделирование и проектирование систем, включающих методы борьбы с замиранием, обычно сложнее разработки систем, где единственным источником ухудшения рабочих характеристик считается щум AWGN.

15.2. Описание распространения радиоволн в мобильной связи

На рис. 15.1 представлен обзор проявления эффектов замирания в каналах. Он начинается с двух типов эффектов замирания, характерных для мобильной связи: крупномасштабное и мелкомасштабное замирание. Крупномасштабное замирание отражает среднее ослабление мощности сигнала или потери в тракте вследствие распространения на большое расстояние. На рис. 15.1 проявления крупномасштабного замирания показаны в блоках 1-3. На это явление влияют выступающие наземные элементы (например холмы, леса, рекламные щиты, фуппы строений и т.д.) между передатчиком и приемником. Часто говорят, что приемник затеняется этими выступами. Статистика крупномасштабного замирания позволяет приблизительно рассчитать потери в тракте как функцию расстояния. Это часто описывается через средние потери в тракте (степенной закон и-го порядка) и логарифм нормального распределения от-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 [ 311 ] 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358