www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 [ 305 ] 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

= (W Wa, по модулю М)х, по модулю М =

= я,д:, по модулю М =

1 = 1

= lt;x, (14.47)

1 = 1

Поскольку авторизованный пользователь знает засекреченный быстровозрастающий вектор а для отыскания х он может использовать S.

14.5.5.1. Использование схемы Меркла-Хэллмана

Предположим, пользователь А желает создать общедоступную и конфиденциальную функции щифрования. Сначала он рассматривает быстровозрастающий вектор а = (171, 197, 459, 1191, 2410, 4517).

а;=8945

Затем он выбирает простое число М, большее 8945, случайное число W, такое, что 1 lt;W lt;M, и вычисляет W\ при котором MW = 1 по модулю М.

Пусть М = 9109 Пусть W=2251 тогда = 1388

скрыты

После этого он образует вектор, который оставляет лазейку в рюкзаке.

а, = а, 2251 по модулю 9109 а = 2343, 6215, 3892, 2895, 5055, 2123

Пользователь А делает общедоступным вектор а, который, очевидно, не является быстровозрастающим. Предположим, что пользователь В желает послать сообщение пользователю А.

Если X = 010110 - сообщение, которое нужно передать, то пользователь В создает следующее число;

5 = ах = 14 165 и передает его пользователю А.

Пользователь А получает S и превращает его в S.

5 = а i = W5 по модулю М = = 1388 14 165 по модулю 9109 = = 3798

Используя S = 3798 и быстровозрастающий вектор а, пользователь А легко находит х.

Схема Меркла-Хэллмана сейчас считается взломанной [16], поэтому для реализации криптосистем с открытыми ключами используется алгоритм RSA (равно как и другие рассмотренные позднее).

14* КпМПТПГМГТРМи! П OTInuiTUIMM ininuaiuiM 943



14.6. Pretty Good Privacy

PGP (Pretty Good Privacy, буквально: весьма хорошая секретность ) - это программа обеспечения секретности, которая бьша создана Филиппом Циммерманом (Philip Zimmerman) [17] и опубликована в 1991 году как бесплатное программное обеспечение. Затем она де-факто стала стандартом для электронной почты и шифрования файлов. PGP версии 2.6 (наиболее широко используемая) оставалась неизменной вплоть до появления версии 5.0 (совместимой с версией 2.6). В табл. 14.9 приведены алгоритмы, используемые в версиях 2.6, 5.0 и более поздних.

Таблица 14.9. Сравнение PGP 2.6 и PGP 5.0

Функция

PGP версии 2.6

Используемый алгоритм [17]

POP версии 5.0 и более поздних Используемый алгоритм [18]

Шифрование сообщения с использова- IDEA нием алгоритма частного ключа с помощью ключа частного сеанса

Шифрование ключа частного сеанса с RSA помощью алгоритма частного ключа

Цифровая подпись RSA

Хэш-функция, используемая при соз- MD5 Дании профиля сообщения для цифровых подписей

Тройной DES, CAST или IDEA

RSA или алгоритм Диффи-Хэллмана (вариант Элгемала)

RSA и DSS (от NISf)

SHA-1

Как показано в табл. 14.9, PGP использует множество алгоритмов шифрования, включающих как схемы частного ключа, так и схемы открытого ключа. При шифровании сообщения применяется алгоритм частного ключа (для каждого сеанса генерируется новый ключ сеанса). В качестве алгоритмов частного ключа, предлагаемых PGP, представлены Международный алгоритм шифрования данных (International Desalination and Environmental Association - IDEA), тройной DES и алгоритм CAST (названный в честь авторов Карлайла Адамса (Carlisle Adams) и Стэффорда Тевереса (Stafford Tavares) [19]). Для шифрования ключа каждого сеанса используется алгоритм открытого ключа. В качестве алгоритмов, использующих открытые ключи, PGP предлагает алгоритм RSA, описанный в разделе 14.5.3, и алгоритм Диффи-Хэллмана (DifTie-Hellman).

Алгоритмы с открытыми ключами применяются также для создания цифровых подписей. POP версии 5.0 использует алгоритм цифровой подписи (Digital Signature Algorithm - DSA), заданный в стандартах цифровой подписи (Digital Signature Standard - DSS) института NIST. PGP версии 2.6 в своих цифровых подписях использует алгоритм RSA. Если имеющийся канал не защищен от изменений ключа, он более безопасен для использования алгоритма с ключом общего доступа. Для защищенного канала предпочтительно шифрование с частным ключом, поскольку это, как правило, дает лучшее быстродействие по сравнению с системами, использующими открытые ключи.

Digital Signature Standard - Стандарт цифровой подписи, разработанный NIST. National Institute of Standards and Technology - Национальный институт стандартов и технологий США; отдел Министерства торговли США.

Гпяня 14 111мг+1ппрянмр м пртиЛпование



Технология шифрования сообщения, применяемая PGP версии 2.6, изображена на рис. 14.20. Перед шифрованием открытый текст сжимается с помощью ZIP-алгоритма. Система POP использует ZIP-метод, описанный Жаном-Лупом Гейли (Jean-Loup Gaily), Марком Элдером (Mark Alder) и Ричардом Б. Уэльсом (Richard В. Wales) [18]. Если сжатый текст короче несжатого, то шифроваться будет сжатый текст, в противном случае будет шифроваться несжатый.

Небольшие файлы (приблизительно 30 символов для файлов ASCII) не выигрывают от сжатия. К тому же, PGP распознает файлы, ранее сжатые с помощью распространенных технологий сжатия, таких как PKZIP, и не будет пытаться сжать их. Сжатие данных устраняет избыточные строки символов и приводит к более равномерному распределению символов. С помощью сжатия получаем более короткий файл для шифрования и дешифрования (что сокращает время, необходимое для щифрования, дешифрования и передачи файла). Сжатие также создает препятствия некоторым криптоаналитическим атакам, использующим избыточность. Необходимо отметить, что сжатие файла должно предшествовать шифрованию (а не наоборот). Почему стоит следовать этому правилу? Хороший алгоритм шифрования дает шифрованный текст с практически статистически равномерным распределением символов. Следовательно, если алгоритм сжатия данных следует после такого шифрования, он не будет давать никакого сжатия вообще. Если некоторый шифрованный текст может быть сжат, то алгоритм шифрования, с помощью которого получен шифрованный текст, был неудачным. Алгоритм сжатия не должен обнаруживать избыточные фрагменты в тексте, зашифрованном с помощью хорошего алгоритма.

Как показано на рис. 14.20, PGP начинает шифрование файла с создания 128-битового ключа сеанса, используя генератор псевдослучайных чисел. Затем с помощью этого случайного ключа сеанса шифруется сжатый файл открытого текста, для чего применяется алгоритм частного ключа IDEA.

После этого случайный ключ сеанса шифруется с помощью алгоритма открытого ключа RSA; при этом используется открытый ключ получателя. ЬСлюч сеанса, зашифрованный с помощью алгоритма RSA, и файл, зашифрованный с использованием алгоритма IDEA, посылаются получателю. Когда получателю нужно прочесть файл, вначале, с помощью алгоритма RSA, дешифруется зашифрованный ключ сеанса. При этом используется частный ключ получателя. Затем дешифруется собственно шифрованный файл, при этом применяется дешифрованный ключ сеанса и алгоритм IDEA. После разархивации Получатель может читать расшифрованный файл.

14.6.1. Тройной DES, CAST и IDEA

Как показано в табл. 14.9, PGP предлагает три блочных шифра для шифрования сообщения - тройной DES, CAST и IDEA. Все три шифра оперируют 64-битовыми блоками открытого и шифрованного текстов. Размер ключа тройного DES составляет 168 бит, в то время как CAST и IDEA использГуют ключи длиной 128 бит.

14 R Prpttv RnnrI Priuaru 945



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 [ 305 ] 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358