www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 [ 269 ] 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

вило, является степенью 2. Таким образом, существует N12 - 1 положительных уровней, N12 - 1 отрицательных уровней и нулевой уровень - всего N - 1 уровень и N -2 интервала. Теперь, если аппроксимировать плотность на каждом интервале квантили константами q = {x +i-x ), выражение (13.15) упростится до следующего вида:

Ош=2 р{х ) =

N12-1

=-4.1 , (13.16)

где е{х) в равенстве (13.15) было заменено х из (13.16), поскольку е(х) - линейная функция от X, имеющая единичный наклон и проходящая через нуль в центре каждого интервала. Кроме того, пределы интегрирования в равенстве (13.15) были заменены в соответствии с изменениями х внутри интервала квантили. Поскольку область изменения была обозначена через нижний и верхний пределы могут быть обозначены как х= -qjl и х = -qjl. Равенство (13.16) описывает мощность ощибки в линейной области в виде суммы мощности ощибки /12 в каждом интервале квантили, взвешенной вероятностью p(x )q этой энергии ошибки.

13.2.2. Равномерное квантование

Если устройство квантования имеет равномерно расположенные квантили, равные q, и все интервалы равновероятны, выражение (13.16) упрощается далее.

N/2-l n11-1 2

-Т2 -Т2 I

Если квантующее устройство работает не в области насыщения (мощности шума квантования), тогда =о , и эти величины часто используются как взаимозаменяемые. Отметим, что мощность шума сама по себе не будет полно описывать поведение шума устройства квантования. Более полной мерой качества является отношение второго центрального момента (дисперсии) шума квантования к входному сигналу. Если предположить, что входной сигнал имеет нулевое среднее, дисперсия сигнала равна

al= jxp(x)dx. (13.18)

Дальнейшее изучение среднего шума квантующего устройства требует конкретизации функции плотности и устройства.

Пример 13.4. Равномерное квантующее устройство

Определим дисперсию устройства квантования и отношение мощности шума к мощности сигнала (noise-to-signal power ratio - NSR) для равномерно распределенного в полной динамической области сигнала, созданного устройством квантования с 2* расположенными на одинаковых расстояниях уровнями квантили. В этом случае шума насьшхения не существует и должна быть вычислена только величина линейного шума. Каждый интервал квантили равен



= (2 2-*. (13.19)

Здесь 2 max - это входной интервал между положительной и отрицательной границами линейной области квантования.

Решение

Подставляя выражение (13.19) в формулу (13.12) или (13.17), получим следующую мощность шума квантования (в линейной области):

о] =:1(2 ,2-*) =-(2 ,)2- . (13.20)

Мощность входного сигнала находится путем интегрирования выражения (13.18) для равномерной плотности вероятности в интервале длины 2 тах с центром в точке О, так что р{х) -1/(2 тах), и дисперсия сигнала находится следующим образом:

о1 =

l-xdx = 4-i2E.f. (13.21)

Рассматривая отношение мощности шума к мощности сигнала (NSR), получим следующее:

NSR = -f = 2-2* . (13.22)

Теперь, переводя NSR в децибелы, получим следующее:

NSR,E = 10 Ig(NSR) = 10 lg(2- = (13.23,а)

= -20Z raquo;lg(2) = -6,02й(дБ). (1.3.23,6)

Выражение (13.23, б) свидетельствует о том, что за каждый бит, который используется в процессе преобразования, мы платим -6,02 дБ отношения шума к сигналу. Действительно, NSR для любого равномерного квантующего устройства, не работающего в области насыщения, имеет следующий вид:

ЫЗКдБ =-6,02й + С. (13.24)

Здесь член С зависит от функции плотности вероятности сигнала (probability density function - pdO; он положителен для функций плотности, являющихся узкими по отношению к уровню насыщения преобразователя.

13.2.2.1. Сигнал и шум квантования в частотной области

До настоящего момента шум квантования обсуждался с точки зрения его влияния на выборку временного ряда, представляющую дискретный сигнал. Шум квантования может быть также описан в частотной области; это позволяет взглянуть на влияние условий работы, что и будет сделано ниже. В процессе этого изучения предполагается также рассмотрение насыщения (раздел 13.2.3), возмущения (раздел 13.2.4) и квантующих устройств с обратной связью по щуму (раздел 13.2.6).

На рис. 13.7 представлено дискретное преобразование Фурье двух синусоид, которые являются результатом выборки с помощью линейного 10-битового АЦП. Сравнительные амплитуды двух синусоид равны 1,0 и 0,01 (т.е. одна на 40 дБ ниже другой). На рис. 13.7, а сигнал низкой частоты (обозначенный О дБ) масштабируется на 1 дБ ниже полной динамической области 10-битового квантующего устройства, которую для удобства будем считать единичной. Отметим, что на



рис. 13.7, а полномасштабный сигнал О дБ находится на 6 дБ ниже входного уровня поглощения I дБ. Это объясняется наличием множителя 1/2 в спектральном разложении действительного сигнала по всем ненулевым частотам. Среднее отнощение сигнала к шуму квантования (SNR) для 10-битового квантующего устройства равно 60 + С дБ. Для полномасштабной синусоиды константа С равна 1,76 дБ, что делает суммарное отношение SNR примерно равным 62 дБ. При дискретном преобразовании Фурье (discrete Fourier transform - DFT, ДПФ), которое выполнялось для получения графика на рис. 13.7, длина равнялась 256. Поскольку отношение SNR преобразования увеличивается пропорционально длине преобразования (или времени интегрирования), то благодаря преобразованию SNR улучшается на 24 дБ [2] с потерей 3,0 дБ вследствие усечения. Таким образом, на выходе преобразования вершина SNR вследствие квантования равна 62 + 24 -3 = 83 дБ. Шумовой сигнал на каждой частоте ДПФ может быть представлен как квадратный корень из суммы квадратов гауссовых случайных величин, которая описывается как случайная величина, имеющая распределение хи-квадрат с двумя степенями свободы. Дисперсия (мощность щума) равна квадрату среднего. Таким образом, имеем значительные колебания вокруг математического ожидания у]ров-ня мощности шума. Для получения устойчивой оценки нижнего уровня шума нам потребуется среднее по ансамблю. Видно, что нижний уровень щума (получен с помощью 400 средних) равен -83 дБ. К сигналу перед квантованием был добавлен псевдослучайный шум (описанный в разделе 13.2.4), чтобы рандомизировать ошибки квантования. На рис. 13.7, б п в входные сигналы ослабляются относительно полномасштабного входа на 20 и 40 дБ. Это ослабление увеличивает константу С в формуле (13.24) на 20 и 40 дБ, что проявляется как уменьшение спектральных уровней входных синусоид на эти же величины. Отметим, что входной сигнал наивысшей частоты (рис. 13.7, в), который теперь уменьшился на 80 дБ относительно полной шкалы, располагается на 3 дБ ниже среднего уровня щума преобразователя. Синусоида самой низкой частоты на рис. 13.7, в теперь ослаблена на 40 дБ относительно полной шкалы, поэтому характеризуется SNR на 40 дБ меньшим, чем для сигнала на рис. 13.7, а.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 [ 269 ] 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358