www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 [ 199 ] 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

метить, что способность синхронизировать также имеет значительные потенциальные последствия, связанные с эффективностью и универсальностью системы. Кадровая синхронизация позволяет использовать передовые, универсальные методы множественного доступа, подобные схемам множественного доступа с предоставлением каналов по требованию (demand assignment multiple access - DAMA). Кроме того, использование методов расширения спектра - как схем множественного доступа, так и схем подавления интерференции - требует высокого уровня синхронизации системы. (Методы расширения спектра подробно рассмотрены в главе 12.) Далее будет показано, что эти технологии предлагают возможность создания весьма разносторонних систем, что является очень важным свойством при изменении системы или при воздействии преднамеренных или непреднамеренных помех от различных внешних источников.

10.1.3. Подход и предположения

Со времени первой редакции текста бьшо сделано, по крайней мере, два значительных открытия в области синхронизации. Одно - использование методов работы с дискретными данными для обработки сигналов (в том числе - синхронизации). Другое - это публикация нескольких работ о синхронизации [2-4]. В данной главе мы не будем пытаться охватить весь материал, связанный с синхронизацией. Нашей задачей является выработка широкого интуитивного понимания данного вопроса, а не перечисление методов проектирования синхронизаторов. Следовательно, мы будем подразумевать использование традиционных аналоговых разработок, считая, что те же принципы применимы и к системам обработки дискретных данных, даже если реализация синхронизаторов будет отличаться. Схемы ФАПЧ коммерчески доступны в виде относительно небольших чипов или являются частью большего устройства обработки сигналов. Предполагается, что читатель, интересующийся современными реализациями описанных принципов, способен определить, как они применяются к дискретным данным.

10.2. Синхронизация приемника

Все системы цифровой связи требуют определенной синхронизации сигналов, поступающих в приемник. В данном разделе рассматриваются основы синхронизации различных уровней. Обсуждение начинается с рассмотрения основных уровней синхронизации, требуемых для когерентного приема, - частотной и фазовой - и краткого обсуждения структуры и принципов работы схем фазовой автоподстройки частоты (ФАПЧ). Затем рассматривается символьная синхронизация. В некоторой степени символьная синхронизация требуется всем цифровым операциям приема (когерентным и некогерентным). В финальной части раздела описывается кадровая синхронизация приемника и методы ее получения и поддержания.

10.2.1. Частотная и фазовая синхронизация

Практически во всех схемах синхронизации имеется определенная разновидность контура фазовой автоподстройки частоты (ФАПЧ). В современных цифровых приемниках опознать этот контур может бьпъ трудно, но его функциональный эквивалент присутствует практически всегда. Схема базового контура ФАПЧ показана на рис. 10.1. Контуры ФАПЧ самоуправляемы, причем управляющим параметром является фаза локально генерируемой копии поступающего несущего сигнала. Контуры ФАПЧ состоят из трех основных компонентов: детектора фазы, контурного фильтра и генератора, управляемого напряжением



(ГУН). Детектор фазы - это устройство, измеряющее различия фаз поступающего сигнала и локальной копии. Если поступающий сигнал и его локальная копия изменяются относительно друг друга, то эта разность фаз (или рассогласование по фазе) - это зависимый от времени сигнал, поступающий на контурный фильтр. Контурный фильтр регулирует отклик контура ФАПЧ на эти изменения сигнала. Качественно спроектированный контур должен иметь возможность отслеживать изменения фазы поступающего сигнала и не должен бьпъ чрезмерно восприимчив к щуму приемника. ГУН - это устройство, создающее копию несущей. Данный генератор, как можно догадаться из названия, является генератором синусоидального сигнала, частота которого управляется уровнем напряжения на входе устройства. На рис. 10.1 детектор фазы показан как умножитель, контурный фильтр описывается собственной импульсной характеристикой Дг) и ее Фурье-образом F((o).

п .. . Контурный детектор ф

r{t)--(9)

x(f)

e(f)

F(co)

y(f)

Генератор, управляемый напряжением

Рис. 10.1. Схема контура фазовой автоподстройки частоты

ГУН - это генератор, выходная частота которого является линейной функцией входного напряжения (в определенном рабочем диапазоне частот). Положительное входное напряжение приведет к тому, что выходная частота ГУН будет выще неуправляемого значения coq, тогда как отрицательное напряжение приведет к тому, что частота ГУН будет меньще этого значения. Синхронизация по фазе достигается путем подачи фильтрованной версии разности фаз (т.е. рассогласования по фазе) между входным сигналом КО и выходным сигналом с ГУН x{t), на вход ГУН (на рис. 10.1 эта функция обозначена каку(О).

Для современных цифровых приемников детектор рассогласования может быть сложнее математически, чем это показано на рис. 10.1. Например, детектор рассогласования может представлять собой набор корреляторов (согласованных фильтров), каждый из которых служит для сопоставления с некоторым значением сдвига фаз, с последующей подачей на вход ГУН взвешенной суммы сигналов с выходов этих корреляторов. Выход весовой функции может представлять собой оценку рассогласования по фазе. Подобная функция может быть математически очень сложной, но ее легко аппроксимировать, используя современные цифровые технологии. ГУН не обязательно должен быть генератором синусоидального сигнала, он может быть реализован как постоянная память, указатели которой управляются таймером и выходом устройства оценки рассогласования по фазе. Контур обратной связи не обязательно должен быть непрерывным (как на рис. 10.1), а коррекция фазы может производиться только один раз на кадр или один раз на пакет, в зависимости от структуры сигнала. В информационный поток может вводиться специальный заголовок или известная последовательность символов, которые будут облегчать процесс синхронизации. И все же, несмотря на эти очевидные различия, основные элементы всех схем ФАПЧ сходны с показанными на рис. 10.1.



Рассмотрим нормированный входной сигаал следующего вида:

/-(/) = cos [coof+e(r)]. (10.1)

Здесь (Во - номинальная несущая частота, а в(г) - медленно меняющаяся фаза. Подобным образом рассмотрим нормированный выходной сигнал генератора, управляемого напряжением

x(t) = - 2 sin [cOot + Q(t)]. (10.2)

На выходе детектора фазы эти сигналы дадут выходной сигнал рассогласования следующего вида:

eit) = x{t)r{t) = 2 sin [cOflf + в(г)] cos [со/ + в(г)] =

(103)

= sin [Bit) - 8(0] + sin [2cOo + в(г) + 8(01.

Пусть контурный фильтр является фильтром нижних частот, тогда второе слагаемое правой части выражения (10.3) будет отфильтровано и им можно пренебречь. (Предположение о фильтре нижних частот является разумным решением при проектировании контура.) Фильтр нижних частот дает сигнал рассогласования, являющийся функцией исключительно разности фаз между входом (формула (10.1)) и выходом ГУН (формула (10.2)). Это именно тот сигнал, который нам нужен. Выходная частота ГУН является производной по времени от аргумента синусоиды из уравнения (10.2). Если предположить, что соо - это неуправляемая частота ГУН (частота на выходе при нулевом входном напряжении), отличие выходной частоты ГУН от соо можно выразить как производную по времени от фазы Q(t). Выходная частота ГУН является линейной функцией входного напряжения. Следовательно, поскольку выходное нулевое напряжение дает выходную частоту соо, отличие выходной частоты от соо будет пропорционально значению выходного напряжения y(t).

ЛаКО = [Ш = K yit) = at

= K{t)*m= ( deg;- gt;

laquo;л:о[в(о-в(0]*/(0

Здесь Асо(/) обозначает разность частот, знак * - свертку (см. приложение А), а при последнем преобразовании использовалось приближение малых углов (т.е. e(t) =

sin [в(г) - в(г) ] = 8(0 - в(г)). Приближение малых углов справедливо при малых значениях выходного рассогласования по фазе (контур близок к синхронизации по фазе). Все сказанное выше справедливо при нормально функционирующем контуре. Множитель Ко - это усиление ГУН, а j{t) - импульсная характеристика контурного

фильтра. Данное линейное дифференциальное уравнение относительно 8(г) (в котором использовано приближение малых углов) называется линеаризованным уравнением контура. Это, пожалуй, наиболее полезное соотношение при определении поведения контура при нормальной работе (когда мало рассогласование по фазе).

.....-----------------.....-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 [ 199 ] 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358