www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 [ 146 ] 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

10-2 р


5,0 5,5 (дБ)

Рис. 8.2. Зависимость Рв от Еь/No для различных ортогональных кодов Рида-Соломона с возможностью коррекции t бит в символе и п = 31, при 32-ричной модуляции MFSK в канале AWGN. (Перепечатано с разрешения автора из Data Communications, Network, and Systems, ed. Thomas C. Bartee, Howard W. Sams Company, Indianapolis, Ind., 1985, p. 312. Ранее публиковалось в J. P. Odenwalder, Error Control Coding Handbook, M/A-COM LINKABIT, Inc., San Diego, Calif., July, 15, 1976, p. 92.)

8.1.2. Почему коды Рида-Соломона эффективны при борьбе с импульсными помехами

Давайте рассмотрим код (п, fc) = (255,247), в котором каждый символ состоит из /и = 8 бит (такие символы принято называть байтами). Поскольку и - Л:=8, из уравнения (8.4) можно видеть, что этот кед может исправлять любые 4-символьные ошибки в блоке длиной до 255. Пусть блок длительностью 25 бит в ходе передачи поражается помехами, как показано на рис. 8.3. В этом примере пакет шума, который попадает на 25 последовательных битов, исказит точно 4 символа. Декодер для кода (255, 247) исправит любые 4Симвсльные ошибки без учета характера повреждений, причиненных символу. Другими словами, если декодер исправляет байт (заменяет неправильный правильным), то ошибка может быть вызвана искажением одного или всех восьми битов. Поэтому, если символ неправильный, он может быть искажен на всех двоичных позициях. Это дает кеду Рида-Соломона огромное



преимущество при наличии импульсных помех по сравнению с двоичными кодами (даже при использовании в двоичном коде чередования). В этом примере, если наблюдается 25-битовая случайная помеха, ясно, что искаженными могут оказаться более чем 4 символа (искаженными могут оказаться до 25 символов). Конечно, исправление такого числа ошибок окажется вне возможностей кода (255, 247).

8.1.3. Рабочие характеристики кода Рида-Соломона как функция размера, избыточности и степени кодирования

Для того чтобы код успешно противостоял шумовым эффектам, длительность помех должна составлять относительно небольшой процент от количества кодовых слов. Чтобы быть уверенным, что так будет большую часть времени, принятый шум необходимо усреднить за большой промежуток времени, что снизит эффект от неожиданной или необычной полосы плохого приема. Следовательно, можно предвидеть, что код с коррекцией ошибок будет более эффективен (повысится надежность передачи) при увеличении размера передаваемого блока, что делает код Рида-Соломона более привлекательным, если желательна большая длина блока [3]. Это можно оценить по семейству кривых, показанному на рис. 8.4, где степень кодирования взята равной 7/8, при этом длина блока возрастает с л = 32 символов (при ш = 5 бит на символ) до п = 256 симюлов (при ш = 8 бит на символ). Таким образом, размер блока возрастает с 160 бит до 2048 бит.

25-битовый пакет шума

Символ 1

Символ 2

Символ 3

Символ 4

Символ 5

Символ 6

Норма Искажен Искажен Искажен Искажен Норма Рис. 8.3. Блок данных, искаженный 25 -битовым пакетом ошибок

10-5

3 10-10

I 10-15

10-20

1 1

-1-г-=

r-s (32, 28ь/ т = Ьу

/ /

/ r-S(64,56)/

/r-S(256,224) / m = 8

/r-S(128,112/

/ Г /,

/ 1 1

10-6 10-5 10- raquo; 10-3 10-2

Вероятность появления случайной ошибки в бите

Рис. 8.4. Характеристики декодера Рида-Соломона как функция размера символов (степень кодирования = 7/8)



По мере увеличения избыточности кода (и снижения его степени кодирования), сложность реализации этого кода повышается (особенно для высокоскоростных устройств). При этом для систем связи реального времени должна увеличиться ширина полосы пропускания. Увеличение избыточности, например увеличение размера символа, приводит к уменьшению вероятности появления битовых ошибок, как можно видеть на рис. 8.5, где кодовая длина п равна постоянному значению 64 при снижении числа символов данных с Л = 60 до Л = 4 (избыточность возрастает с 4 до 60 символов).


10-3 10-2 10-1

Вероятность появления случайной ошибки в бите

Рис. 8.5. Характеристики декодера (64, к) как функция избыточности

Рида-Соломона

На рис. 8.5 показана передаточная функция (выходная вероятность появления битовой ошибки, зависящая от входной вероятности появления символьной ошибки) гипотетических декодеров. Поскольку здесь не имеется в виду определенная система или канал (лишь вход-выход декодера), можно заключить, что належность передачи является монотонной функцией избыточности и будет неуклонно возрастать с приближением степени кодирования к нулю. Однако это не так, если отношение EJNq фиксировано. По мере изменения степени кодирования кода от максимального значения до минимального (от О до 1), интересно было бы понаблюдать за эффектами, показанными на рис. 8.6. Здесь кривые рабочих характеристик показаны при модуляции BPSK и кодах (31, к) для разных типов каналов. На рис. 8.6 показаны системы связи реального времени, в которых за кодирование с коррекцией ошибок приходится платить расширением полосы пропускания, пропорциональным величине, равной обратной степени кодирования. Приведенные кривые показывают четкий оптимум степени кодирования, минимизирующий требуемое значение EJNq [4]. Для гауссова канала оптимальное значение степени кодирования находится где-то между 0,6 и 0,7, для канала с райсовским замиранием - около 0,5 (с отношением мощности прямого сигнала к мощности отраженного К = 7 дБ) и 0,3 - для канала с релеевским замиранием. (Каналы с замиранием будут рассматриваться в главе 15.) Почему здесь как при очень высоких степенях кодирования (малой избыточности), так и при очень низких (значительной избыточности)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 [ 146 ] 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358