www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 [ 138 ] 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

а Q(x) определяется уравнениями (3.43) и (3.44) и приведено в табл. Б.1. Следовательно, для кода СО степенью кодирования 1/2 и просветом й?/=5, при использовании когерентной схемы BPSK и жесткой схемы принятия решений при декодировании, можем записать следующее:

IV No)

exp(-5 j/2iVo)

[l-2exp{- i/2/Vo}]

qQseiNo)

(1.11)

[l-2exp(- i/2/Vo)] 7.4.5. Эффективность кодирования

Эффективность кодирования, представленная уравнением (6.19), определяется как уменьшение (обычно выраженное в децибелах) отношения EJNq, требуемого для достижения определенной вероятности появления ошибок в кодированной системе, по сравнению с некодированной системой с той же модуляцией и характеристиками канала. В табл. 7.2 перечислены верхние границы эффективности кодирования. Они сравниваются с некодированным сигналом с когерентной модуляцией BPSK для нескольких значений минимальных просветов сверточного кода. Длина кодового ограничения в гауссовом канале с жесткой схемой принятия решений при декодировании изменяется от 3 до 9. В таблице отражен тот факт, что даже при использовании простого сверточного кода можно достичь значительной эффективности кодирования. Реальная эффективность кодирования будет изменяться в зависимости от требуемой вероятности появления битовых ошибок [20].

Таблица 7.2. Верхние границы эффективности кодирования для некоторых сверточных кодов

Коды со степенью кодирования 1/2

Коды со степенью кодирования 7/2

К d,

Верхняя граница (дБ)

Верхняя граница (дБ)

3 5

3,97

4,26

4 6

4,76

5,23

5 7

5,43

6,02

6 8

6,00

6,37

7 10

6,99

6,99

8 10

6,99

7,27

9 12

7,78

7,78

Источник: V. К. Bhargava, D. Haccoun, R. Matyas and P. Nuspl. DigUal CommunicaUons by Satellite. John Wiley amp; Sons, Inc., New York, 1981.

В табл. 7.3 приводятся оценки эффективности кодов, сравниваемые с некодированным сигналом с когерентной модуляцией BPSK, реализованной аппаратным путем или путем моделирования на компьютере, в гауссовом канале с мягкой схемой принятия решений при декодировании [21]. Некодированное значение EJNoRano в крайнем левом столбце. Из табл. 7.3 можно видеть, что эффективность кодирования возрастает при уменьшении вероятности появления битовой ошибки. Однако эффективность кодирования не может возрастать бесконечно. Как показано в таблице, она имеет верхнюю границу. Эту границу (в децибелах) можно выразить следующим образом:

7 Л --.-.-- laquo;------



эффективность кодирования lt; 10 \girdf). (7.23)

Здесь г - степень кодирования, г. df - просвет. При изучении табл. 7.3 обнаруживается также, что (при рв = Ю ) для кодов со степенью кодирования 1/2 и 2/3 более слабые коды имеют тенденцию находиться ближе к верхней фанице, чем более мощные коды.

Таблица 7.3. Основные значения эффективности кодирования (в дБ) при использовании мягкой схемы принятия решений в ходе декодирования по алгоритму Витерби

Некодирова-нное Eb/Nf)

Степень кодирования

(дБ)

Рв К

10-5

11,3

Верхняя граница

Источник: 1. М. Jacobs. PracUcal Apphcanons of Codmg. IEEE Trans Inf. Theory, vol. 1T20, May 1974, pp. 305-310.

Как правило, декодирование по алгоритму Витерби используется в двоичном входном канале с жестким или мягким 3-битовым квантованным выходом. Длина кодового Офаничения варьируется от 3 до 9, причем степень кодирования кода редко оказывается меньще 1/3, и память путей составляет несколько длин кодового ограничения [12]. Памятью путей называется глубина входных битов, которая сохраняется в декодере. После рассмотрения в разделе 7.3.4 декодирования по алгоритму Витерби может возникнуть вопрос об ограничении объема памяти путей. Из этого примера может показаться, что декодирование кодового слова в любом узле может происходить сразу, как только останется один выживщий путь в этом узле. Это действительно так; хотя для создания реального декодера таким способом потребуется большое количество постоянных проверок после декодирования кодового слова. На практике вместо всего этого обеспечивается фиксированная задержка, после которой кодовое слово декодируется. Было показано [12, 22], что информации о происхождении состояния с наименьшей метрикой состояния (с использованием фиксированного объема путей, порядка 4 или 5 длин кодового ограничения) достаточно для получения характеристик декодера, которые для гауссова канала и канала BSC на величину порядка 0,1 дБ меньше характеристик оптимального канала. На рис. 7.21 показаны характерные результаты моделирования достоверности передачи при декодировании по алгоритму Витерби с жесткой схемой квантования [12]. Заметьте, что каждое увеличение длины кодового ограничения приводит к улучшению требуемого значения EJNq на величину, равную приблизительно 0,5 дБ, при Pg = 10 .

7.4.6. Наиболее известные сверточные коды

Векторы связи или полиномиальные генераторы сверточного кода обычно выбираются исходя из свойств просветов кода. Главным критерием при выборе кода является требование, чтоб код не допускал катастрофического распространения ошибок и имел максимальный просвет при данной степени кодирования и длине кодового ограничения.



10-2 г


Еь/No (дБ)

Рис. 7.21. Зависимость вероятности появления битовой ошибки от EJNo при степени кодирования кодов 1/2; используется когерентная модуляция BPSK в канале BSC, декодирование согласно алгоритму Витерби и 32-битовая память путей. (Перепечатано с разрешения авторов из J. А. Heller and I. М. Jacobs. Viterbi Decoding for Satellite and Space Communication . IEEE Trans. Commun. Techno]., vol COM 19, n. 5, October, 1971, Fig 7, p. 84 copy; 1971, IEEE)

Затем при данном просвете df минимизируется число путей или число ошибочных битов данных, которые представляют путь. Процедуру выбора можно усовершенствовать, рассматривая количество путей или ошибочных битов при df+1, df + 1 и т.д., пока не останется только один код или класс кодов. Список наиболее известных кодов со степенью кодирования 1/2 при К, равном от 3 до 9, и со степенью кодирования 1/3 при К, равном от 3 до 8, соответствуюших этому критерию, был составлен Одену-альдером (Odenwalder) [3, 23] и приводится в табл. 7.4. Векторы связи в этой таблице представляют наличие или отсутствие (1 или 0) соединения между соответствуюшими регистрами сверточного кодера, причем крайний левый элемент соответствует крайнему левому разряду регистра кодера. Интересно, что эти соединения можно обратить (заменить в указанной выше схеме крайние левые на крайние правые). При декодировании по алгоритму Витерби обратные соединения приведут к кодам с точно такими же пространственными характеристиками, а значит, и с такими же рабочими характеристиками, как показаны в табл. 7.4.

Таблица 7.4. Оптимальные коды с малой длиной кодового ограничения (степень кодирования 1/2 и 1/3)

Степень кодирования

Длина кодового

Просвет

Вектор кода

ограничения



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 [ 138 ] 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358